JoVE Logo

Anmelden

Consider a coffee mug hanging on a hook in a pantry. If the mug gets knocked, it oscillates back and forth like a pendulum until the oscillations die out.

A simple pendulum can be described as a point mass and a string. Meanwhile, a physical pendulum is any object whose oscillations are similar to a simple pendulum, but cannot be modeled as a point mass on a string because its mass is distributed over a larger area. The behavior of a physical pendulum can be modeled using the principles of rotational motion and the concept of the moment of inertia. For both a simple and a physical pendulum, the restoring force is the force of gravity. With a simple pendulum, gravity acts on the center of the pendulum bob, while in the case of a physical pendulum, the force of gravity acts on the center of mass (CM) of the object.

The period (T) of a simple pendulum depends on its length and acceleration due to gravity (g). The period is entirely independent of other factors, such as mass and maximum displacement. Given the dependence of T on g, if the length of a pendulum and the period of oscillation is precisely known, they can be used to measure the acceleration due to gravity. This method for determining gravity can be very accurate.

A physical pendulum can also be used to measure the free-fall acceleration due to gravity at a particular location on Earth's surface, thousands of measurements of which have been made during geophysical prospecting.

Tags

Acceleration Due To GravityPendulumSimple PendulumPhysical PendulumOscillationRestoring ForceMoment Of InertiaCenter Of MassPeriod Of OscillationGeophysical Prospecting

Aus Kapitel 15:

article

Now Playing

15.11 : Measuring Acceleration Due to Gravity

Oscillations

472 Ansichten

article

15.1 : Einfache harmonische Bewegung

Oscillations

9.0K Ansichten

article

15.2 : Eigenschaften der einfachen harmonischen Bewegung

Oscillations

11.2K Ansichten

article

15.3 : Oszillationen um eine Gleichgewichtsposition

Oscillations

5.2K Ansichten

article

15.4 : Energie in einfacher harmonischer Bewegung

Oscillations

7.5K Ansichten

article

15.5 : Häufigkeit des Feder-Masse-Systems

Oscillations

5.2K Ansichten

article

15.6 : Einfache harmonische Bewegung und gleichmäßige Kreisbewegung

Oscillations

4.1K Ansichten

article

15.7 : Problemlösung: Energie in einfacher harmonischer Bewegung

Oscillations

1.1K Ansichten

article

15.8 : Einfaches Pendel

Oscillations

4.5K Ansichten

article

15.9 : Torsionspendel

Oscillations

5.2K Ansichten

article

15.10 : Physikalisches Pendel

Oscillations

1.6K Ansichten

article

15.12 : Gedämpfte Schwingungen

Oscillations

5.6K Ansichten

article

15.13 : Arten der Dämpfung

Oscillations

6.3K Ansichten

article

15.14 : Erzwungene Schwingungen

Oscillations

6.4K Ansichten

article

15.15 : Konzept der Resonanz und ihre Eigenschaften

Oscillations

5.0K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten