Anmelden

In mathematics and physics, the gradient and del operator are fundamental concepts used to describe the behavior of functions and fields in space. The gradient is a mathematical operator that gives both the magnitude and direction of the maximum spatial rate of change. Consider a person standing on a mountain. The slope of the mountain at any given point is not defined unless it is quantified in a particular direction. For this reason, a "directional derivative" is defined, which is a vector that gives the slope and direction. The gradient of the scalar field satisfies both these conditions.

The gradient has the following general properties: (1) It operates on a scalar function and results in a vector function. (2) It is normal to a constant value surface. This property is used extensively to identify the direction of vector fields. (3) The gradient always points toward the maximum change in the scalar function.

Mathematically, the gradient of a scalar function is expressed as

Equation1

Here, 'p' is the scalar function. The term in the parenthesis is called the del operator. The del operator is a vector operator that acts on vector and scalar fields. It is a mathematical operator that, by itself, has no geometrical meaning. It is the interaction of the del operator with other quantities that gives it geometric significance.

Tags

GradientDel OperatorMathematical OperatorScalar FieldVector FunctionDirectional DerivativeSpatial Rate Of ChangeVector FieldsMaximum ChangeScalar FunctionGeometric Significance

Aus Kapitel 2:

article

Now Playing

2.11 : Gradient and Del Operator

Vectors and Scalars

2.4K Ansichten

article

2.1 : Einführung in die Skalare

Vectors and Scalars

13.8K Ansichten

article

2.2 : Einführung in Vektoren

Vectors and Scalars

13.5K Ansichten

article

2.3 : Vektorkomponenten im kartesischen Koordinatensystem

Vectors and Scalars

18.2K Ansichten

article

2.4 : Polare und zylindrische Koordinaten

Vectors and Scalars

14.1K Ansichten

article

2.5 : Sphärische Koordinaten

Vectors and Scalars

9.7K Ansichten

article

2.6 : Vektoralgebra: Grafische Methode

Vectors and Scalars

11.4K Ansichten

article

2.7 : Vektoralgebra: Methode der Komponenten

Vectors and Scalars

13.3K Ansichten

article

2.8 : Skalares Produkt (Punktprodukt)

Vectors and Scalars

8.0K Ansichten

article

2.9 : Vektorprodukt (Kreuzprodukt)

Vectors and Scalars

9.2K Ansichten

article

2.10 : Scalar und Vector Triple Produkte

Vectors and Scalars

2.2K Ansichten

article

2.12 : Divergenz und Kräuselung

Vectors and Scalars

1.6K Ansichten

article

2.13 : Zweite Ableitungen und Laplace-Operator

Vectors and Scalars

1.1K Ansichten

article

2.14 : Linien-, Flächen- und Volumenintegrale

Vectors and Scalars

2.1K Ansichten

article

2.15 : Divergenz und Stokes-Theoreme

Vectors and Scalars

1.4K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten