Anmelden

Consider a region consisting of several individual conductors with a definite charge density in the region between these conductors. The second uniqueness theorem states that if the total charge on each conductor and the charge density in the in-between region are known, then the electric field can be uniquely determined.

In contrast, consider that the electric field is non-unique and apply Gauss's law in divergence form in the region between the conductors and the integral form to the surface enclosing each conductor. When integrated over the outermost boundary, the charge includes the total charge on all the conductors and the charge density in the in-between region.

If a third field is defined as the difference between the two fields, then the divergence of the third field and the integral form of the third field are zero. The product rule is used to obtain the expression for the divergence of the third field and its associated potential. The potential can be written in terms of the field, and applying that the divergence of the third field is zero gives the square of the magnitude of the electric field.

Equation1

Equation2

Equation3

Equation4

This expression is integrated over the region's volume, and the divergence theorem is applied to rewrite the volume integral as a surface integral. Recalling that the surface integral of the third field is zero implies that the magnitude of the third field is zero everywhere. This shows that the first two fields are equal, proving the solution's uniqueness.

Tags

Second Uniqueness TheoremElectric FieldCharge DensityConductorsGauss s LawDivergence FormIntegral FormSurface IntegralDivergence TheoremPotentialUniqueness Proof

Aus Kapitel 24:

article

Now Playing

24.15 : Second Uniqueness Theorem

Electric Potential

934 Ansichten

article

24.1 : Elektrische potentielle Energie

Electric Potential

5.4K Ansichten

article

24.2 : Potentielle elektrische Energie in einem gleichmäßigen elektrischen Feld

Electric Potential

4.4K Ansichten

article

24.3 : Potentielle elektrische Energie von Zweipunktladungen

Electric Potential

4.3K Ansichten

article

24.4 : Elektrisches Potential und Potentialdifferenz

Electric Potential

4.1K Ansichten

article

24.5 : Auffinden des elektrischen Potentials aus dem elektrischen Feld

Electric Potential

3.9K Ansichten

article

24.6 : Berechnungen des elektrischen Potentials I

Electric Potential

1.8K Ansichten

article

24.7 : Berechnungen des elektrischen Potentials II

Electric Potential

1.5K Ansichten

article

24.8 : Potentialäquipotentialflächen und Feldlinien

Electric Potential

3.5K Ansichten

article

24.9 : Potentialausgleichsflächen und Leiter

Electric Potential

3.3K Ansichten

article

24.10 : Bestimmung des elektrischen Feldes aus dem elektrischen Potential

Electric Potential

4.3K Ansichten

article

24.11 : Poisson- und Laplace-Gleichung

Electric Potential

2.5K Ansichten

article

24.12 : Van-de-Graaff-Generator

Electric Potential

1.6K Ansichten

article

24.13 : Energie, die mit einer Ladungsverteilung verbunden ist

Electric Potential

1.4K Ansichten

article

24.14 : Elektrostatische Randbedingungen

Electric Potential

375 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten