JoVE Logo

Anmelden

27.16 : RC Circuits: Discharging A Capacitor

One of the applications of an RC circuit is the relaxation oscillator. The relaxation oscillator comprises a voltage source, a capacitor, a resistor, and a neon lamp. The lamp acts like an open circuit (infinite resistance) until the potential difference across the neon lamp reaches a specific voltage. At that voltage, the lamp acts like a short circuit (zero resistance), and the capacitor discharges through the neon lamp and produces light. Once the capacitor is fully discharged through the lamp, it again begins to charge, and the process repeats.

To understand the discharging of a capacitor, consider a simple RC circuit with a two-way position switch connected to a voltage source. Once the capacitor is fully charged, the position of the switch is moved to disconnect the battery from the circuit. Now the circuit reduces to a simple series connection of the resistor, the capacitor, and the switch. The voltage source is completely removed from the circuit. Instantly, the capacitor then discharges through the resistor, and its charge decreases to zero. The relaxation oscillator controls indicator lights that flash at a frequency determined by the values for R and C.

Kirchhoff's loop rule is used to analyze the circuit. Using the definition of the current and integrating the loop equation gives the charge on the capacitor as a function of time:

Exponential decay formula q(t)=Qe^-t/τ; electrical charge discharge, equations, study

The expression for current can be found by taking the time derivative of the charge:

Exponential decay current formula, I(t)=dq/dt=-Q/τ e^(-t/τ), diagram for transient analysis.

The negative sign in the expression indicates that the direction of current flow is opposite compared to the direction of the current in the case of charging. The charge, current, and voltage magnitudes decrease exponentially, approaching zero as time increases.

Tags

RC CircuitsDischarging CapacitorRelaxation OscillatorVoltage SourceNeon LampResistorCharge DecreaseCurrent FlowKirchhoff s Loop RuleExponential DecayIndicator LightsSeries ConnectionElectrical Analysis

Aus Kapitel 27:

article

Now Playing

27.16 : RC Circuits: Discharging A Capacitor

Direct-Current Circuits

3.3K Ansichten

article

27.1 : Elektromotorische Kraft

Direct-Current Circuits

4.4K Ansichten

article

27.2 : Widerstände in Reihe

Direct-Current Circuits

4.7K Ansichten

article

27.3 : Parallele Widerstände

Direct-Current Circuits

4.5K Ansichten

article

27.4 : Kombination von Widerständen

Direct-Current Circuits

2.5K Ansichten

article

27.5 : Kirchhoffs Regeln

Direct-Current Circuits

4.5K Ansichten

article

27.6 : Kirchoff-Regeln: Anwendung

Direct-Current Circuits

1.4K Ansichten

article

27.7 : DC-Batterie

Direct-Current Circuits

729 Ansichten

article

27.8 : Mehrere Spannungsquellen

Direct-Current Circuits

1.1K Ansichten

article

27.9 : Galvanometer

Direct-Current Circuits

2.1K Ansichten

article

27.10 : Amperemeter

Direct-Current Circuits

2.0K Ansichten

article

27.11 : Voltmeter

Direct-Current Circuits

1.2K Ansichten

article

27.12 : Potentiometer

Direct-Current Circuits

503 Ansichten

article

27.13 : Wheatstone-Brücke

Direct-Current Circuits

417 Ansichten

article

27.14 : Verlustleistung in einem Stromkreis: Problemlösung

Direct-Current Circuits

1.1K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten