JoVE Logo

Anmelden

9.18 : Rocket Propulsion in Gravitational Field - I

Rockets range in size from small fireworks that ordinary people use to the enormous Saturn V that once propelled massive payloads toward the Moon. The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses are explained by the same physical principle: Newton's third law of motion. The matter is forcefully ejected from a system, producing an equal and opposite reaction on what remains.

The motion of a rocket in space changes its velocity (and hence its momentum) by ejecting burned fuel gases, causing it to accelerate in the opposite direction of the velocity of the ejected fuel. Due to conservation of momentum, the rocket's momentum changes by the same amount (with the opposite sign) as the ejected gases. However, in the presence of a gravitational field, the momentum of the entire system decreases by the gravitational force acting on the rocket for a small time interval, producing a negative impulse. Remember that impulse is the net external force on a system multiplied by the time interval, and it equals the change in momentum of the system. Using the principle of momentum conservation, the velocity of a rocket moving under gravitational force at any given instant can be calculated using the ideal rocket equation.

This text is adapted from Openstax, College Physics, Section 8.7: Introduction to Rocket Propulsion and Openstax, University Physics Volume 1, Section 9.7: Rocket Propulsion.

Tags

Rocket PropulsionNewton s Third LawMomentum ConservationGravitational FieldRocket EquationImpulseVelocityFuel EjectionAccelerationSpace Motion

Aus Kapitel 9:

article

Now Playing

9.18 : Rocket Propulsion in Gravitational Field - I

Linear Momentum, Impulse and Collisions

2.7K Ansichten

article

9.1 : Linearer Impuls

Linear Momentum, Impulse and Collisions

13.7K Ansichten

article

9.2 : Kraft und Schwung

Linear Momentum, Impulse and Collisions

15.2K Ansichten

article

9.3 : Impuls

Linear Momentum, Impulse and Collisions

18.3K Ansichten

article

9.4 : Impuls-Impuls-Satz

Linear Momentum, Impulse and Collisions

11.0K Ansichten

article

9.5 : Impulserhaltung: Einleitung

Linear Momentum, Impulse and Collisions

14.4K Ansichten

article

9.6 : Impulserhaltung: Problemlösung

Linear Momentum, Impulse and Collisions

9.8K Ansichten

article

9.7 : Arten von Kollisionen - I

Linear Momentum, Impulse and Collisions

6.6K Ansichten

article

9.8 : Arten von Kollisionen - II

Linear Momentum, Impulse and Collisions

7.1K Ansichten

article

9.9 : Elastische Kollisionen: Einführung

Linear Momentum, Impulse and Collisions

12.1K Ansichten

article

9.10 : Elastische Kollisionen: Fallstudie

Linear Momentum, Impulse and Collisions

13.3K Ansichten

article

9.11 : Kollisionen in mehreren Dimensionen: Einführung

Linear Momentum, Impulse and Collisions

4.7K Ansichten

article

9.12 : Kollisionen in mehreren Dimensionen: Problemlösung

Linear Momentum, Impulse and Collisions

3.5K Ansichten

article

9.13 : Schwerpunkt: Einführung

Linear Momentum, Impulse and Collisions

14.0K Ansichten

article

9.14 : Bedeutung des Massenschwerpunkts

Linear Momentum, Impulse and Collisions

6.2K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten