Anmelden

The first human genome sequencing project cost $2.7 billion and was declared complete in 2003, after 15 years of international cooperation and collaboration between several research teams and funding agencies. Today, with the advent of next-generation sequencing technologies, the cost and time of sequencing a human genome have dropped over 100 fold.

Next-Generation Sequencing Methods

Although all next-generation methods use different technologies, they all share a set of standard features. Next-generation sequencing allows for the parallel sequencing of millions of fragments of DNA as opposed to the traditional sequencing methods. The pure genomic DNA is first fragmented into smaller fragments to make a sequencing library. This DNA library is then amplified for use in the actual sequencing reactions. While the reversible terminator sequencing method uses fluorescent dNTPs with a reversible terminator as a critical ingredient in the sequencing reaction, pyrosequencing utilizes the pyrophosphate released after the addition of each nucleotide. This pyrophosphate is appropriated for a light-generating reaction by the firefly luciferase enzyme, which can then be detected. Hence, both these methods work on the principle of ‘sequencing by synthesis.’ On the other hand, ‘sequencing by ligation’ methods rely on the specificity and sensitivity of DNA ligases towards mismatch base-pairing to decipher the nucleotide sequence of a DNA fragment.

Application of Next-Generation Sequencing

Next-generation sequencing methods are not solely applied to whole-genome sequencing. They are often used in the field of clinical diagnostics, epigenetics, metagenomics, epidemiology, and transcriptomics. Next-generation sequencing technologies also have the potential to be applied in personalized medicine to accelerate early detection and intervention of some disorders, including cancer.

Tags

Next generation SequencingHuman Genome SequencingCostTimeCollaborationInternational CooperationResearch TeamsFunding AgenciesNext generation Sequencing TechnologiesParallel SequencingDNA FragmentsSequencing LibraryReversible Terminator SequencingPyrosequencingSequencing By SynthesisSequencing By LigationNucleotide Sequence

Aus Kapitel 15:

article

Now Playing

15.13 : Next-generation Sequencing

Erforschung von DNA und RNA

85.8K Ansichten

article

15.1 : Rekombinante DNA

Erforschung von DNA und RNA

16.5K Ansichten

article

15.2 : DNA-Isolierung

Erforschung von DNA und RNA

37.1K Ansichten

article

15.3 : DNA-Agarose-Gel-Elektrophorese

Erforschung von DNA und RNA

92.8K Ansichten

article

15.4 : Markierung von DNA-Sonden

Erforschung von DNA und RNA

8.0K Ansichten

article

15.5 : Südlicher Blot

Erforschung von DNA und RNA

17.7K Ansichten

article

15.6 : DNA-Microarrays

Erforschung von DNA und RNA

17.0K Ansichten

article

15.7 : Komplementäre DNA

Erforschung von DNA und RNA

5.5K Ansichten

article

15.8 : FISH - Fluoreszierende In-situ-Hybridisierung

Erforschung von DNA und RNA

19.1K Ansichten

article

15.9 : PCR - Polymerase-Kettenreaktion

Erforschung von DNA und RNA

81.8K Ansichten

article

15.10 : Echtzeit-RT-PCR

Erforschung von DNA und RNA

56.4K Ansichten

article

15.11 : RACE - Schnelle Amplifikation von cDNA-Enden

Erforschung von DNA und RNA

6.2K Ansichten

article

15.12 : Sanger-Sequenzierung

Erforschung von DNA und RNA

750.7K Ansichten

article

15.14 : RNA-seq

Erforschung von DNA und RNA

9.6K Ansichten

article

15.15 : Genom-Annotation und -Assemblierung

Erforschung von DNA und RNA

18.7K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten