McNemar's Test is a nonparametric statistical test used to determine if there is a significant difference in proportions between two related groups when the outcome is binary (e.g., yes/no, success/failure). It is beneficial when we have paired data, such as pre-test/post-test designs, where the same subjects are measured under two different conditions. The test is named after the statistician Quinn McNemar, who introduced it in 1947. It is commonly used in situations where subjects are measured before and after a treatment or in matched-pair study designs.
Assumptions of McNemar's Test
For McNemar's test to produce valid results, the following assumptions must be met:
Applicability and Conditions
McNemar's test is particularly suited for the following situations:
McNemar's test is a valuable tool for analyzing paired nominal data, particularly in medical and psychological research, where pre-post designs and matched-pair studies are commonly used. By understanding and meeting the assumptions of the test, researchers can apply McNemar's test to draw reliable conclusions about differences in proportions between two related groups.
Bölümden 13:
Now Playing
Nonparametric Statistics
141 Görüntüleme Sayısı
Nonparametric Statistics
660 Görüntüleme Sayısı
Nonparametric Statistics
225 Görüntüleme Sayısı
Nonparametric Statistics
682 Görüntüleme Sayısı
Nonparametric Statistics
99 Görüntüleme Sayısı
Nonparametric Statistics
70 Görüntüleme Sayısı
Nonparametric Statistics
89 Görüntüleme Sayısı
Nonparametric Statistics
84 Görüntüleme Sayısı
Nonparametric Statistics
100 Görüntüleme Sayısı
Nonparametric Statistics
149 Görüntüleme Sayısı
Nonparametric Statistics
583 Görüntüleme Sayısı
Nonparametric Statistics
658 Görüntüleme Sayısı
Nonparametric Statistics
673 Görüntüleme Sayısı
Nonparametric Statistics
590 Görüntüleme Sayısı
Nonparametric Statistics
555 Görüntüleme Sayısı
See More
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır