로그인

A parallel-plate capacitor with capacitance C, whose plates have area A and separation distance d, is connected to a resistor R and a battery of voltage V. The current starts to flow at t = 0. What is the displacement current between the capacitor plates at time t? From the properties of the capacitor, what is the corresponding real current?

To solve the problem, we can use the equations from the analysis of an RC circuit and Maxwell's version of Ampère's law.

For the first part of the problem, the voltage between the plates at time t is given by

Equation1

Suppose that the z-axis points from the positive plate to the negative plate. In this case, the z-component of the electric field between the plates as a function of time t is given by

Equation2

Therefore, the z-component of the displacement current Idbetween the plates of the capacitor can be evaluated as

Equation3

where the capacitance Equation 4is being used.

Further, to solve the second part of the above-stated problem, the current into the capacitor after the circuit is closed can be obtained by the charge on the capacitor, which in turn can be evaluated by using the expression for VC. As a result, the real current into the capacitor is found to be the same as the displacement current.

Tags

Ampere Maxwell s LawParallel plate CapacitorCapacitanceDisplacement CurrentElectric FieldRC CircuitVoltageReal CurrentCharge On The CapacitorTime T

장에서 30:

article

Now Playing

30.14 : Ampere-Maxwell's Law: Problem-Solving

Electromagnetic Induction

447 Views

article

30.1 : 유도

Electromagnetic Induction

3.8K Views

article

30.2 : 패러데이의 법칙

Electromagnetic Induction

3.7K Views

article

30.3 : 렌츠의 법칙

Electromagnetic Induction

3.4K Views

article

30.4 : 모셔널 EMF

Electromagnetic Induction

3.0K Views

article

30.5 : 패러데이 디스크 다이나모

Electromagnetic Induction

1.9K Views

article

30.6 : 유도 전기장

Electromagnetic Induction

3.5K Views

article

30.7 : 유도 전기장: 응용 분야

Electromagnetic Induction

1.4K Views

article

30.8 : 와전류

Electromagnetic Induction

1.5K Views

article

30.9 : 변위 전류

Electromagnetic Induction

2.7K Views

article

30.10 : 변위 전류의 중요성

Electromagnetic Induction

4.2K Views

article

30.11 : 전자기장

Electromagnetic Induction

2.1K Views

article

30.12 : 맥스웰의 전자기학 방정식

Electromagnetic Induction

2.9K Views

article

30.13 : Maxwell 방정식의 대칭

Electromagnetic Induction

3.2K Views

article

30.15 : Maxwell 방정식의 미분 형식

Electromagnetic Induction

348 Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유