JoVE Logo

Anmelden

8.10 : Eukaryotic RNA Polymerases

RNA Polymerase (RNAP) is conserved in all animals, with bacterial, archaeal, and eukaryotic RNAPs sharing significant sequence, structural, and functional similarities. Among the three eukaryotic RNAPs, RNA Polymerase II is most similar to bacterial RNAP in terms of both structural organization and folding topologies of the enzyme subunits. However, these similarities are not reflected in their mechanism of action.

All three eukaryotic RNAPs require specific transcription factors, of which the TATA-binding protein is common to all. These proteins remain attached to the RNAP to guide the direction of RNA synthesis on the template DNA strand. Once RNA strand elongation is complete, the RNAP and associated proteins need to disassemble and release the mRNA transcript.

Unlike the termination signals encoded by bacterial genes, the protein-encoding genes transcribed by RNA Polymerase II lack specific sequences that direct the enzyme to terminate at precise locations. The most common termination pathway, known as the Poly(A) dependent termination, combines polyadenylation of the mRNA transcript with RNAP termination. Here, while the RNA Polymerase II continues to transcribe RNA, sometimes up to thousands of basepairs past the end of the gene sequence, the transcript is cleaved at an internal site. Thus the upstream part of the transcript is released and a polyadenine tail can be added to the 3' end of the cleaved transcript. The downstream cleavage product is digested by a 5'-exonuclease while it is still being transcribed by the RNA Polymerase II. When the 5'-exonuclease digests all of the remainder transcripts, it helps the RNAP to dissociate from its DNA template strand, thus completing the transcription.

Tags

RNA PolymeraseRNAPeukaryotic RNAPsRNA synthesistranscription factorsTATA binding proteinmRNA transcriptPoly A dependent terminationgene transcriptionexonuclease

Aus Kapitel 8:

article

Now Playing

8.10 : Eukaryotic RNA Polymerases

Transkription: Von DNA zu RNA

23.3K Ansichten

article

8.1 : Was ist Genexpression?

Transkription: Von DNA zu RNA

28.5K Ansichten

article

8.2 : RNA-Struktur

Transkription: Von DNA zu RNA

25.2K Ansichten

article

8.3 : RNA-Stabilität

Transkription: Von DNA zu RNA

10.4K Ansichten

article

8.4 : Bakterielle RNA-Polymerase und Transkription

Transkription: Von DNA zu RNA

28.5K Ansichten

article

8.5 : Typen von RNA

Transkription: Von DNA zu RNA

25.2K Ansichten

article

8.6 : Transkription

Transkription: Von DNA zu RNA

37.2K Ansichten

article

8.7 : Transkriptionsfaktoren

Transkription: Von DNA zu RNA

20.2K Ansichten

article

8.9 : RNA-Polymerase-II-Hilfs-Proteine

Transkription: Von DNA zu RNA

9.1K Ansichten

article

8.10 : Transkriptions-Elongationsfaktoren

Transkription: Von DNA zu RNA

10.7K Ansichten

article

8.11 : Prä-mRNA-Prozessierung

Transkription: Von DNA zu RNA

26.1K Ansichten

article

8.12 : RNA-Spleißen

Transkription: Von DNA zu RNA

17.0K Ansichten

article

8.13 : Chromatinstruktur reguliert prä-mRNA-Prozessierung

Transkription: Von DNA zu RNA

6.9K Ansichten

article

8.14 : Nukleärer Export von mRNA

Transkription: Von DNA zu RNA

7.5K Ansichten

article

8.15 : Ribosomale RNA-Synthese

Transkription: Von DNA zu RNA

13.1K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten