An erratum was issued for: In situ TEM of Biological Assemblies in Liquid. The Representative Results and References sections were updated. Figure Legend 3 in the Representative Results section was updated from:
Figure 3. Representative results for DLPs in liquid. A) Glow-discharged microchips bind very few DLPs in solution in comparison to affinity-decorated microchips (B). Scale bars, 2 μm. C) Representative image (top panel) and 3D reconstruction (inset) of DLPs in liquid containing contrast reagent. Scale bar, 150 nm. The diameter of the reconstruction is 80 nm. Class averages of the DLPs in liquid (bottom panel) reveal nicely defined features along their outer surface. Individual panels are 110 nm.
to:
Figure 3. Representative results for DLPs. A) Glow-discharged microchips bind very few DLPs in comparison to (B) affinity-decorated microchips. Scale bars, 2 μm. C) Representative image (top panel) and 3D reconstruction (inset) of DLPs in liquid containing contrast reagent. Scale bar, 150 nm. The diameter of the reconstruction is 80 nm. Class averages of the DLPs in liquid (bottom panel) reveal nicely defined features along their outer surface. Individual panels are 110 nm. Particles shown in Figure 3B were enriched using functionalized microchips as demonstrated in Tanner et al., J. Analyt. Molecul. Tech., 2013.22
The References section was updated from:
- Zhou, Z. H. Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr. Opin. Struct. Biol. 18, 218-228, doi:10.1016/j.sbi.2008.03.004 (2008).
- Wolf, M., Garcea, R. L., Grigorieff, N. & Harrison, S. C. Subunit interactions in bovine papillomavirus. Proc. Natl. Acad. Sci. U.S.A. 107, 6298-6303, doi:10.1073/pnas.0914604107 (2010).
- Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129-228 (1988).
- Unwin, P. N. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425-440 (1975).
- Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy. Biol. Proced. Online. 6, 23-34, doi:10.1251/bpo70 (2004).
- Adrian, M., Dubochet, J., Fuller, S. D. & Harris, J. R. Cryo-negative staining. Micron. 29, 145-160 (1998).
- Parsons, D. F. Structure of wet specimens in electron microscopy. Improved environmental chambers make it possible to examine wet specimens easily. Science. 186, 407-414 (1974).
- Parsons, D. F., Matricardi, V. R., Moretz, R. C. & Turner, J. N. Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys. 15, 161-270 (1974).
- Hui, S. W. & Parsons, D. F. Electron diffraction of wet biological membranes. Science. 184, 77-78 (1974).
- Hui, S. W., Parsons, D. F. & Cowden, M. Electron diffraction of wet phospholipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 71, 5068-5072 (1974).
- Ring, E. A. & de Jonge, N. Microfluidic system for transmission electron microscopy. Microsc. Microanal. 16, 622-629, doi:10.1017/S1431927610093669 (2010).
- Dukes, M. J., Ramachandra, R., Baudoin, J. P., Gray Jerome, W. & de Jonge, N. Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3nm precision using aberration-corrected scanning transmission electron microscopy. J. Struct. Biol. 174, 552-562, doi:10.1016/j.jsb.2011.03.013 (2011).
- Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science. 336, 61-64, doi:10.1126/science.1217654 (2012).
- Peckys, D. B. & de Jonge, N. Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett. 11, 1733-1738, doi:10.1021/nl200285r (2011).
- Klein, K. L., Anderson, I. M. & de Jonge, N. Transmission electron microscopy with a liquid flow cell. J. Microsc. 242, 117-123, doi:10.1111/j.1365-2818.2010.03484.x (2011).
- Degen, K., Dukes, M., Tanner, J. R. & Kelly, D. F. The development of affinity capture devices-a nanoscale purification platform for biological in situ transmission electron microscopy. Rsc. Adv. 2, 2408-2412, doi:Doi 10.1039/C2ra01163h (2012).
- Gilmore, B. L. et al. Visualizing viral assemblies in a nanoscale biosphere. Lab Chip. 13, 216-219, doi:10.1039/c2lc41008g (2013).
- Bican, P., Cohen, J., Charpilienne, A. & Scherrer, R. Purification and characterization of bovine rotavirus cores. J. Virol. 43, 1113-1117 (1982).
- Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190-199, doi:10.1006/jsbi.1996.0030 (1996).
- Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. U.S.A. 105, 1867-1872, doi:10.1073/pnas.0711623105 (2008).
- Scheres, S. H. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406-418, doi:10.1016/j.jmb.2011.11.010 (2012).
- Kelly, D. F., Abeyrathne, P. D., Dukovski, D. & Walz, T. The Affinity Grid: a pre-fabricated EM grid for monolayer purification. J. Mol. Biol. 382, 423-433, doi:10.1016/j.jmb.2008.07.023 (2008).
to:
- Zhou, Z. H. Towards atomic resolution structural determination by single-particle cryo-electron microscopy. Curr. Opin. Struct. Biol. 18, 218-228, doi:10.1016/j.sbi.2008.03.004 (2008).
- Wolf, M., Garcea, R. L., Grigorieff, N. & Harrison, S. C. Subunit interactions in bovine papillomavirus. Proc. Natl. Acad. Sci. U.S.A. 107, 6298-6303, doi:10.1073/pnas.0914604107 (2010).
- Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129-228 (1988).
- Unwin, P. N. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425-440 (1975).
- Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy. Biol. Proced. Online. 6, 23-34, doi:10.1251/bpo70 (2004).
- Adrian, M., Dubochet, J., Fuller, S. D. & Harris, J. R. Cryo-negative staining. Micron. 29, 145-160 (1998).
- Parsons, D. F. Structure of wet specimens in electron microscopy. Improved environmental chambers make it possible to examine wet specimens easily. Science. 186, 407-414 (1974).
- Parsons, D. F., Matricardi, V. R., Moretz, R. C. & Turner, J. N. Electron microscopy and diffraction of wet unstained and unfixed biological objects. Adv. Biol. Med. Phys. 15, 161-270 (1974).
- Hui, S. W. & Parsons, D. F. Electron diffraction of wet biological membranes. Science. 184, 77-78 (1974).
- Hui, S. W., Parsons, D. F. & Cowden, M. Electron diffraction of wet phospholipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 71, 5068-5072 (1974).
- Ring, E. A. & de Jonge, N. Microfluidic system for transmission electron microscopy. Microsc. Microanal. 16, 622-629, doi:10.1017/S1431927610093669 (2010).
- Dukes, M. J., Ramachandra, R., Baudoin, J. P., Gray Jerome, W. & de Jonge, N. Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3nm precision using aberration-corrected scanning transmission electron microscopy. J. Struct. Biol. 174, 552-562, doi:10.1016/j.jsb.2011.03.013 (2011).
- Yuk, J. M. et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science. 336, 61-64, doi:10.1126/science.1217654 (2012).
- Peckys, D. B. & de Jonge, N. Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett. 11, 1733-1738, doi:10.1021/nl200285r (2011).
- Klein, K. L., Anderson, I. M. & de Jonge, N. Transmission electron microscopy with a liquid flow cell. J. Microsc. 242, 117-123, doi:10.1111/j.1365-2818.2010.03484.x (2011).
- Degen, K., Dukes, M., Tanner, J. R. & Kelly, D. F. The development of affinity capture devices-a nanoscale purification platform for biological in situ transmission electron microscopy. Rsc. Adv. 2, 2408-2412, doi:Doi 10.1039/C2ra01163h (2012).
- Gilmore, B. L. et al. Visualizing viral assemblies in a nanoscale biosphere. Lab Chip. 13, 216-219, doi:10.1039/c2lc41008g (2013).
- Bican, P., Cohen, J., Charpilienne, A. & Scherrer, R. Purification and characterization of bovine rotavirus cores. J. Virol. 43, 1113-1117 (1982).
- Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190-199, doi:10.1006/jsbi.1996.0030 (1996).
- Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. U.S.A. 105, 1867-1872, doi:10.1073/pnas.0711623105 (2008).
- Scheres, S. H. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406-418, doi:10.1016/j.jmb.2011.11.010 (2012).
- Tanner, J. R. et al. Cryo-SiN - An Alternative Substrate to Visualize Active Viral Assemblies. J. Analyt. Molecul. Tech. (2013).
- Kelly, D. F., Abeyrathne, P. D., Dukovski, D. & Walz, T. The Affinity Grid: a pre-fabricated EM grid for monolayer purification. J. Mol. Biol. 382, 423-433, doi:10.1016/j.jmb.2008.07.023 (2008).